Equivalences between categories of modules and categories of comodules
نویسندگان
چکیده
منابع مشابه
Equivalences between cluster categories
Tilting theory in cluster categories of hereditary algebras has been developed in [BMRRT] and [BMR]. These results are generalized to cluster categories of hereditary abelian categories. Furthermore, for any tilting object T in a hereditary abelian category H, we verify that the tilting functor HomH(T,−) induces a triangle equivalence from the cluster category C(H) to the cluster category C(A),...
متن کاملOn Coinduction Functors between Categories of Comodules for Corings
In this note we consider different versions of coinduction functors between categories of comodules for corings induced by a morphism of corings. In particular we introduce a new version of the coinduction functor in the case of locally projective corings as a composition of suitable “Trace” and “Hom” functors and show how to derive it from a more general coinduction functor between categories ...
متن کاملdedekind modules and dimension of modules
در این پایان نامه، در ابتدا برای مدول ها روی دامنه های پروفر شرایط معادل به دست آورده ایم و خواصی از ددکیند مدول ها روی دامنه های پروفر مشخص کرده ایم. در ادامه برای ددکیند مدول های با تولید متناهی روی حلقه های به طور صحیح بسته شرایط معادل به دست آورده ایم و ددکیند مدول های ضربی را مشخص کرده ایم. گزاره هایی در مورد بعد ددکیند مدول ها بیان کرده ایم. در پایان، قضایای lying over و going down را برا...
15 صفحه اولTriangulated Categories of Singularities and Equivalences between Landau-ginzburg Models
In this paper we prove an existence of some type of equivalences between triangulated categories of singularities for varieties of different dimensions. This class of equivalences generalizes so called Knörrer periodicity. As consequence we get equivalences between categories of D-branes of type B on Landau-Ginzburg models of different dimensions.
متن کاملKoszul Duality and Equivalences of Categories
Let A and A! be dual Koszul algebras. By Positselski a filtered algebra U with grU = A is Koszul dual to a differential graded algebra (A!, d). We relate the module categories of this dual pair by a⊗−Hom adjunction. This descends to give an equivalence of suitable quotient categories and generalizes work of Beilinson, Ginzburg, and Soergel.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Mathematica Sinica, English Series
سال: 2008
ISSN: 1439-8516,1439-7617
DOI: 10.1007/s10114-007-6455-7